If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=3Y^2+24Y+36
We move all terms to the left:
-(3Y^2+24Y+36)=0
We get rid of parentheses
-3Y^2-24Y-36=0
a = -3; b = -24; c = -36;
Δ = b2-4ac
Δ = -242-4·(-3)·(-36)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12}{2*-3}=\frac{12}{-6} =-2 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12}{2*-3}=\frac{36}{-6} =-6 $
| 16=2t-4 | | 48-15d=18 | | Y(x)=3x^2+24x+36 | | -(5-t)=0(37t-12t+5(14+3t) | | K(x)=3x^2+24x+36 | | 5^(2x)-26×5^(x)+25=0 | | 2=14+3n | | 1/3e-9=5 | | 0=x^2+(128x/x^2) | | -2w+7=-7 | | 6y=y–20 | | x/x=7/24 | | 8h-9=39 | | 2/3x+1=5/2x | | (-2x^2+18)(3x+22)=0 | | x+22=2x-7 | | (-2x^2+6x-6x+18)(3x+22)=0 | | 2(7n-3)=120 | | 41=8+3r | | 16-2d=6 | | 19y-23=15 | | (2x+6)(3-x)(22+3x)=0 | | X^2=11x+165 | | 116.80=0.20x+12 | | 180=19y-23 | | 2=8+3n | | Y=0.20x+12 | | b/4-5=3 | | 19y-23=0 | | 3x-5=7x+21 | | (x^2/x+15)+11=0 | | 3/5x+1/4x=81/2 |